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Abstract--The relative deformation gradient is defined and used to compare deformations between any two 
points of a body. This concept is useful in the geometrical analysis of deformation in natural folds, where only 
deformed planes and straight lines can be observed. The ease of cylindrical folds with deformed lineations is 
studied. 

INTRODUCTION 

DEFORMATION in folds has been studied first from a 
geometrical point of view (Weiss 1959, Ramsay 1960), 
and then analytically, according to the general theory of 
deformation (Ramsay 1967, Hobbs 1971). But the defor- 
mation of planes and straight lines gives insufficient 
information to determine the total deformation at each 
point. For example, any homogeneous deformation 
before folding cannot be determined. What really 
appears is the heterogeneous part of the deformation 
gradient field. Cobbold (1977) superposed perturbations 
on a regional deformation gradient. The relative defor- 
mation gradient defined in this paper is useful to com- 
pare deformation between any two points x and y, both 
belonging to the present configuration of the body. If we 
observe only surfaces or lines which were initially paral- 
lel planes or straight lines, we can recognize (in the 
present state) infinitesimal vectors dx and dy which were 
equal before deformation. Thus, according to definition 
(1) given below, we get direct information about the 
relative deformation gradient. This concept is applied to 
the case of cylindrical folds with deformed lineations. 

DEFINITION 

Consider a body undergoing a general transformation 
f, called the deformation 

X = f S ,  

where X is the position at the initial time T, and x the 
position at the final time t of a material point (Tand t are 
arbitrary; e.g. Truesdell & Toupin 1960). Denote by 
f ' ( X )  the deformation gradient at X, which transforms 
the infinitesimal vector dX at X into the corresponding 
vector dx at x 

SG 6 : 5 - I  

dx = f ' ( X )  dX. 

To compare deformations between two points x and y, 
with respective initial positions X and Y, we define the 
deformation gradient at x relative to y as the linear 
operatorf'(x, y) which changes dy into dx if the corres- 
ponding infinitesimal vectors dY and dX in the initial 
state are equal 

d x = f ' ( x , y )  dy if d X =  dY. (1) 

From definitions of f ' (X), f ' ( Y )  and f ' (x ,  y), it follows 
immediately that 

f ' ( X )  = f '(x,  y ) f ' (Y) .  (2) 

Equation (2) is somewhat similar to equation (15) of 
Cobbold (1977), if Y is considered as a fixed reference 
point. Equation (2) gives 

f ' (x,  y) = f ' ( X )  f ' (Y)-X; (3) 

if rectilinear coordinates are used in the initial and in the 
final states, the components of f '(x, y) are 

aXi aYk (4) 
f ' (x '  y)ii - OX k Oyj 

From equation (3), the determinant of f '(x, y) is 

d,, (dye-' = (relative volume (5) 
det f ' (x,  y) ~ ~dW,] dilation) 

where dV and dW are two elements of volume, respec- 
tively at X and Y, and dv and dw the corresponding 
deformed volumes. 

A deformation gradient is classically decomposed into 
a strain (or stretch) [right S,(X) or left S~(X)] and 
rotation R(X)  

f ' ( X )  = R(X)Sr(X) = S,(X)R(X).  

The relative deformation gradient may be decomposed 
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Fig. 1. Cylindrical fold which deforms a set of  surfaces (S) and a set of 
lineations (L). Geometrical  parameters  and basic vectors. 

i 

k 

Fig. 2. Geometrical parameters related to isogon surfaces, I. Same 
notation as in Fig. 1. 

in the same way: 

f ' (x ,  y) = R(x, y)Sr(x, y) = SI(x, y)g(x, y); (6) 

R(xr y) is the rotation at x relative to y, St(x, y) and 
S~(x, y) are the right and left strains at x relative to y. 

o f f ( x ,  y) remain unknown. Thus, although f ' (X)  and 
f ' (Y)  are generally unknown, the relative deformation 
gradient f '(x, y) is in great part determined from the 
fold geometry. 

EXAMPLE 

APPLICATION 

Consider a cylindrical fold, which deforms a pre-exist- 
ing lineation (Fig. 1) and two arbitrary points x and y on 
the fold. Let i, j and k be three orthogonal unit vectors, 
with i parallel to the fold axis andj contained in the plane 
tangent to the folded surface at y (Fig. 1). Denote by a 
and/3 the angles between the fold axis and the lineation 
at x and at y, respectively, and by 0 the angle between the 
planes tangent to the folded surfaces at x and at y. We 
suppose that all straight lines parallel to the fold axis 
have been similarly deformed, which may be written 

f '(x, y)i = i. (7) 

The vector cotan/3i + j, parallel to the lineation at y, is 
transformed into a vector parallel to the direction 
cotan ai + cos 0j + sin 0k of the lineation atx  

f'(x, y)(cotan/3i + j )  = a(cotan ai + cos 0j + sin 0k), 

a being a real coefficient. Hence 

f'(x, y)j 
= (a cotan a - cotan/3)i + a cos 0j + a sin 0k. (8)  

Equations (7) and (8) may be written in the matrix form 

matrix of f '(x, y) 

/i a cotan  cotan  i/ 
= a cos 0 , (9) 

a sin 0 

where a, b, c and d are coefficients depending onx andy. 
If there is no volume change, we have the supplementary 
equation: 

ad cos 0 -  ac sin 0 = 1. (10) 

Since t~,/3 and 0 can be measured on the fold, equalities 
(9) and (10) show that only three of the nine coefficients 

The preceding results have been applied to a tight fold 
with long limb and axis plunging gently southwestwards 
in ferruginous quartzites at Amili in the Akjoujt  area, 
Mauritania (Bronner & Sougy 1969, Sougy 1969). An 
early lineation is deformed by the fold and the angle 
between the fold axis and the lineation changes from 12 ° 
(in the long limb) to 115 ° (in the short limb). In the long 
limb, the bedding surfaces are parallel planes and the 
lineations are parallel straight lines: probably, this limb 
has been homogeneously deformed or is undeformed. 
We shall analyse deformation throughout the fold as if 
the long limb were undeformed, which means that we try 
to determine the deformation gradient f'(x, y) relative 
to a reference point y on the long limb. The lineations 
remain approximately in a plane, so that the fold is 
nearly, but not exactly, of similar type. With the further 
assumption (justified by the preceding analogy with 
similar folding) that isogon surfaces were parallel planes 
before deformation, the relative deformation gradient 
f'(x, y) may be completely determined as follows. Since 
y is an arbitrary point on the long limb, it may be chosen 
on the lineation which contains x. The geometry of the 
fold determines how the small vector yy' (see Fig. 2), 
perpendicular to the fold axis and belonging to the 
isogon surface at y, is transformed by f ' (x ,  y) into the 
vector xx' belonging to the isogon surface at x. With 
notations of Fig. 2: 

f'(x, y)(q cos ~bj + q sin ~k) 
= li + p cos (0 + ~)j + p sin (0 + ~)k, 

equivalent, with the help of the matrix (9), to the three 
equations: 

( a c o t a n a - c o t a n f l ) q c o s ~ b + b q s i n ~ b =  l, (11) 

a cos Oq cos ~ + cq sin ~ = p cos(0 + ~), (12) 

a sin at/cos 4J + dq sin ~b = p sin(0 + ~). (13) 

Fi'om equations (10), (12) and (13) we obtain: 
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Fig. 3. Field of local rotations and strain ellipsoids, relative to the long limb in the example. Left part: projection along the 
fold axis; right part: projection perpendicularly to the long limb (rotation axes, strain ellipsoids and spheres situated in the 
long limb side are represented by dashed lines). In the hinge zone, note the different behaviours of the competent 

(quartzose) external bed and the incompetent (ferruginous) internal bed. 

a - q sin ~ .  (14) 
p sin q~' 

b, c and d are then respectively deduced from equations 
(11), (12) and (13). Since 1, p, q, ~p and ~bcan be measured 
on the fold, the matrix (9) of i f(x,  y) is now completely 
determined. According to equation (6), at any point x on 
the fold, f ' (x ,  y) may be decomposed into rotation 
R(x, y) and strain $I (x, y), which may be geometrically 
represented by (i) the axis and angle of rotation and (ii) 
the strain ellipsoid; these are obtained by determining 
the principal axes and proper numbers of the left (rela- 
tive) Cauchy tensor: 

Cl(x, y) = y'(x, y) f ' (x ,  y)t = Sx(x, y)2. 

Results are presented in Fig. 3. According to equation 
(2), the deformation gradient at any point X is equal to 
the (unknown) deformation gradient in the long limb 
multiplied by the determined relative deformation gra- 
dient i f(x,  y). 
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